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Abstract

We study the following connectivity formation problem:
Robots equipped with radio transmitters with a bounded com-
munication range are scattered over a large area. They would
like to relocate so as to form a connected network as soon as
possible. Where should each robot move?
We present an O(

√
n)-factor approximation algorithm for

this problem when n robots are initially distributed uniformly
at random in a bounded area. In addition to analytical proofs,
we verify the performance of our algorithm through simula-
tions.

Introduction

Many multi-robot tasks require the robots to communicate.
In the absence of a communication infrastructure, the robots
must form a communication network themselves. Imagine a
set of robots with communication devices that have a max-
imum communication range. The robots are scattered over
an environment in such a way that their communication net-
work is not connected. How should the robots move so as to
form a connected network in the shortest time? In this pa-
per, we study this problem using a centralized approach for
the case when the initial locations of the robots are chosen
uniformly at random.

Demaine et al. introduced a set of movement minimiza-
tion problems where the input is a graph along with a set
of pebbles placed on the vertices (Demaine et al. 2009).
The goal is to move the pebbles along the edges, so that
the graph induced by their final locations satisfies a desired
property such as connectivity or independence. Among oth-
ers, they studied the CONMAX problem where the objective
is to minimize the maximum movement so as to achieve con-
nectivity. The problem is shown to be NP-complete even in
the presence of an oracle that knows the pebble positions
and guides them to their final configuration. When there ex-
ists an oracle, a pebble does not need to search for others,
and it can directly go to its final position provided by the or-
acle. The authors presented an O(

√
n)-approximation fac-

tor algorithm for this setting with a centralized approach. In
their formulation, communication and motion are coupled
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(edges represent both motion steps and communication ra-
dius) and the results do not directly apply to the Euclidean
case. This case was studied by (Anari et al. 2016) who pre-
sented an O(n)-factor approximation algorithm. Anari et al.
also proved the problem to be (2−

√
2
2 )-inapproximable.

Solutions using a centralized approach, however, may not
be applicable in all scenarios, such as in the case of fail-
ures or disconnections in the communication network. Po-
duri and Sukhatme analyzed the time to achieve connectiv-
ity using a decentralized approach (Poduri and Sukhatme
2007). With the robot movement modeled as random direc-
tion mobility, they show the time to reach connectivity de-
creases by O(1/

√
n) as the number of robots increases.

The connectivity problem was also studied from a connec-
tivity control perspective in a number of papers. Zavlanos
and Pappas developed a gradient-based method for main-
taining the connectivity of a mobile network (Zavlanos and
Pappas 2007). In their centralized control framework, the
mobile robot network is represented as a dynamic graph,
and the potential field is defined over the Laplacian matrix
of this graph. Their framework allows tasks including con-
nectivity maintenance and tracking of a leader robot while
avoiding collisions. In a follow-up study, they proposed a
decentralized controller capable of maintaining the connec-
tivity of the network while the agents perform secondary
objectives, assuming the initial network is connected. How-
ever, due to this assumption, the framework they present is
not applicable to the connectivity maintenance problem de-
scribed in (Demaine et al. 2009) where the robot configura-
tions are initially disconnected. Michael et al. (Michael et al.
2009) later conducted an experimental study to demonstrate
the distributed connectivity control algorithms proposed in
(Zavlanos and Pappas 2008).

In this paper, we revisit the problem studied in (Anari
et al. 2016). We improve the result for random deploy-
ments and present an O(

√
n)-factor approximation algo-

rithm. Our result has many practical applications including
settings where robots have two modes of communication:
a long range, low bandwidth communication mode such as
XBee and a shorter range but high capacity mode such as
WiFi. The robots can exchange their locations by XBee but
might want to form a connected WiFi network, for exam-
ple to exchange videos. Our algorithm provides an efficient
method for doing so.
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We start by formalizing the problem.

Notations and Environment Model

In this section we present the notation and model we use
throughout the paper.

Environment Model: Consider n robots each with a
prescribed connectivity radius r. In this model, the robots
are distributed uniformly at random over a bounded circular
area of radius L.

The initial positions of the robots are represented as X =
{x1, x2, ..., xn}. The Euclidean distance between two robots
xi and xj is denoted as d(xi, xj). We represent the final po-
sitions of the robots in a connected configuration by X ′.

In our analysis we will use the smallest circle C enclosing
the initial positions of the robots. The boundary of this circle
C is denoted as ∂C, and we let R be the radius of C.

We will use some properties from graph theory, and there-
fore we examine the relationship between the representa-
tion of the robots in the Euclidean domain and graphical
settings. By K(X ), we denote the complete graph induced
on X where the edge weights are Euclidean pairwise dis-
tances. The subgraph G(X ; r) of K(X ) includes every edge
in K(X ) with length less than or equal to r.

We consider connected components of G(X ; r) as clus-
ters, and denote the set of disjoint clusters by Π =
{P1, ..., Pm}. The number of robots in a cluster Pi is shown
as |Pi|, hence

∑m
i=1 |Pi| = n. The distance between two

clusters Pi and Pj is denoted with d(Pi, Pj), and it evalu-
ates to minu∈Pi,v∈Pj

d(u, v).
Borrowing from the notation in (Steele and Tierney 1986),

we denote the length of the longest nearest-neighbor link in
K(X ) by Zn. Finally, the connectivity distance Mn denotes
the smallest edge length such that G(X ;Mn) is a connected
graph.

For an instance σ of the problem, let A(σ) be the solu-
tion of our approximation algorithm, and OPT (σ) be the
solution of the optimal strategy. We compute the approxi-
mation ratio of an algorithm A as E[A(σ)/OPT (σ)], where
the expectation is computed over all possible instances of
the problem, and each instance is equally likely.

An approximation algorithm has α-approximation if
E[A(σ)/OPT (σ)] ≤ α. We define α to be 1 if OPT (σ)
is zero, that is when the initial configuration is connected.
We assume that A can check whether this condition is true,
and produces a solution A(σ) = 0, if it is the case.

We are now ready to formally state the problem.
Problem Statement: Given a fixed connectivity radius r,

and positions of n uniformly distributed robots in a bounded
circular area of radius L, compute the final locations of the
robots such that their configuration forms a connected com-
munication network and the expected maximum movement
of a robot is minimized.

In the next section, we continue with results from the ex-
isting literature that are relevant for our analysis.

Preliminaries

In this section we present the existing results we use in our
analyses.

The first result, due to (Penrose 1997), establishes the re-
lationship between the connectivity distance and the number
of robots. Penrose proves that the value of (nπM2

n − log n)
converges to the double exponential distribution for points
independently and uniformly distributed on a unit ball in the
two dimensional Euclidean space.
Result 1. (Penrose 1997) If Mn is the smallest radius such
that G(X ;Mn) is connected, then the following result serves
as an upper bound for Mn.

lim
n→∞Pr[nπM2

n − log n ≤ s] = exp(−e−s) (1)

for any s ∈ R.
Recall that Zn is the length of the longest nearest neigh-

bor link (in other words, for each node, we compute the dis-
tance of its nearest neighbor and take the maximum value
in this set). The following result for lower bounding Zn is
by (Steele and Tierney 1986).
Result 2. (Steele and Tierney 1986) For independently and
uniformly distributed n points on a unit ball in R

2, the fol-
lowing relationship between Zn and n holds:

lim
n→∞Pr[Z2

n ≥ (t+ log n)/πn] = 1− exp(−e−t) (2)

for any t ∈ R.
Here, we remark that the function log(n)/n acts as a

threshold both for the connectivity and the largest nearest-
neighbor distances. Penrose shows as n increases Mn/Zn

approaches to 1 almost always. We also note Mn ≥ Zn since
having no isolated points does not imply connectivity.

Since these are bounds in the limit, we investigated their
tightness through simulations. Figure 1 shows the relation
between Mn, Zn and their bounds for varying number of
robots in a fixed area. We compare the theoretical bounds
above with values computed from simulations. The s and t
values for Mn and Zn bounds were 23 and −1.93, respec-
tively. The chosen values for s and t make the bounds hold
with a probability approaching to 1.

In Figure 1 we see that with high probability the upper
bound for Mn holds, and it is tight. We also observe that
Mn is always larger than Zn.

The network formation algorithm

In this section we introduce an approximation algorithm for
the connectivity maintenance problem. We first upper bound
the performance of the algorithm and then derive the approx-
imation ratio in the analysis section.

The algorithm we propose consists of three parts. In all
cases, we start by checking if the network is already con-
nected. If the value of Mn is smaller than or equal to the
connectivity radius r, then we know that the initial configu-
ration is already connected. Thus, the algorithm will return
the initial positions.

If the configuration is not connected, we use a parameter
characterized by L/r to decide which algorithm to use as a
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Figure 1: Average Mn and Zn values for fixed L = 100 and
varying n = 10 to 600.

subroutine to solve the problem. The value of L/r and its
importance will be explained in the analysis section.

The main algorithm NETWORK-FORMATION is pre-
sented in Algorithm 1. It relies on the subroutine CLUSTER-
CONNECT when the L/r ratio is smaller than

√
n. For

any other scenario STAR-CONNECT is called. Intuitively,
the algorithm chooses CLUSTER-CONNECT for densely dis-
tributed configurations since the robots are likely to coex-
ist as clustered connected networks. For sparsely distributed
positions STAR-CONNECT is preferred since gathering the
robots in a central area is in fact a near-optimal strategy if
the configuration is sparse enough. We next explain these
subroutines.

Algorithm 1 NETWORK-FORMATION

Input: X : robot positions, r: connectivity radius, L: envi-
ronment radius

Output: X ′: final robot positions in a connected configura-
tion

1: Compute smallest Mn s.t. G(X ;Mn) is connected
2: if r ≥ Mn then
3: return X ′ ← X
4: else if L/r ≤ √

n then
5: return X ′ ← CLUSTER-CONNECT(X , r)
6: else
7: return X ′ ← STAR-CONNECT(X , r)

Star Connectivity Algorithm

The star connectivity algorithm rearranges the robots to form
a connected communication network in a star topology. The
algorithm starts by computing the Smallest Enclosing Circle
(SEC) of a set of n robots in X . Then it finds the closest
robot u to the center c of that circle, and moves u to c.

After u is relocated at c, the algorithm moves each robot
in X − {u} towards u, until its distance to u is at most r.
The details are presented in Algorithm 2.

Let R be the radius of the SEC of the robots in the initial
configuration. The robot with the shortest distance to c is

Algorithm 2 STAR-CONNECT

Input: X : robot positions, r: connectivity radius
Output: X ′: final robot positions in a connected configura-

tion
1: c ← The center of the SEC of X
2: xi ← argminxj∈X d(xj , c)
3: x′

i ← c
4: for all xj ∈ X − {xi} do

5: �d ←
−−−→
c−xj

||c−xj || ·max{0, ||c− xj || − r}
6: x′

j ← xj + �d

7: return X ′ ← {x′
1, ..., x

′
n}

moved by the algorithm to c. Here, the distance traveled by
a robot can be at most R. Then, connecting all other robots to
the center costs no more than R− r. Therefore, the solution
produced by Algorithm 2 is always less than or equal to R.

Cluster Connectivity Algorithm

The cluster connectivity algorithm considers the connected
components of G(X ; r) as clusters, chooses an attracting
cluster, and moves all other clusters to the attracting clus-
ter in a sorted order with respect to their distances.

The algorithm initially partitions the robot positions in
G(X ; r) into a set of disjoint connected clusters Π =
{P1, ..., Pm}.

After computing the SEC of the starting locations, it com-
pares the clusters according to what we call their attraction
factors. We define the attraction factor of a cluster Pi to be
ρi := |Pi|/d(Pi, c), where |Pi| denotes the number of robots
in cluster Pi, and d(Pi, c) is the distance between the closest
robot in Pi to the center c of the SEC. The intuition behind
this heuristic is to choose a cluster that is large and close to
the center as possible to attract other clusters.

The cluster with the largest attraction factor is said to be
the attracting cluster P ∗. The robots in P ∗ stay put until all
the robots are connected.

The algorithm sorts the non-attracting clusters with re-
spect to their distances to P ∗ in a non-decreasing order.
Then starting with the closest cluster, the algorithm connects
the clusters to the attracting cluster in a sorted order. The
procedure of connecting a cluster to another is summarized
in Algorithm 3.

Algorithm 3 Connect

Input: Pi, Pj ∈ Π, r: connectivity radius
Output: P ′

i : final positions of the robots in Pi

1: u∗, v∗ ← argminu∈Pi,v∈Pj
d(u, v)

2: d = d(u∗, v∗), �d = (d− r)(v∗ − u∗)/||v∗ − u∗||
3: for all u ∈ Pi do

4: u′ ← u+ �d, P ′
i ← P ′

i ∪ {u′}
5: return P ′

i

Once a cluster connects to the attracting cluster, it does
not move anymore and becomes a part of a growing con-
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(a) Disconnected initial config-
uration

(b) Connected final configura-
tion

Figure 2: The solution of the CLUSTER-CONNECT subrou-
tine for a densely distributed initially disconnected network
of robots

nected component. When the last cluster is attracted to the
large connected component, the algorithm terminates since
the connectivity is maintained. The details of this subroutine
are presented in Algorithm 4.

Algorithm 4 CLUSTER-CONNECT

Input: X : robot positions, r: connectivity radius
Output: X ′: final robot positions in a connected configura-

tion
1: c ← The center of the SEC of X
2: Partition X into clusters Π = {P1, ..., Pm}
3: for all Pi ∈ Π do
4: Compute ρi = |Pi|/d(Pi, c)

5: P ∗ ← argmaxPi∈Π ρi
6: Sort Pi ∈ Π− {P ∗} w.r.t. d(Pi, P

∗)
7: X ′ ← P ∗
8: for all Pi ∈ Π−X ′ in sorted order do
9: P ′

i ← Connect(Pi,X ′)
10: X ′ ← X ′ ∪ P ′

i

11: return X ′

The solution of CLUSTER-CONNECT to an instance of
densely distributed network of 400 robots with L/r = 10
is presented in Figure 2.

Analysis of the algorithm

In the connectivity maintenance problem, we are given n
robots deployed uniformly at random in a circular area of
size πL2, each of them with a connectivity radius r. The
goal is to have a final configuration that is a connected com-
munication network where no edge is larger than r.

We analyze the performance of Algorithm 1 in three dif-
ferent cases. The purpose is to understand the setup of the
robots so as to design a strategy that works well for the ini-
tial configuration. If the configuration is almost connected
for instance, we do not want our algorithm to treat the robots
as far-flung from each other.

In Theorem 1, we present the main result of this paper.
Theorem 1. There exists an O(

√
n)-factor approximation

algorithm for the connectivity maintenance problem with the

maximum movement minimization objective function, where
n is the number of robots.

To characterize the initial configuration, we first compute
the L/r ratio and compare it to two different functions of n.
We use Result 1 as a threshold value for the L/r ratio to de-
termine the probability of the connectivity of the nodes. We
say if L/r is smaller than the threshold, the robots are dis-
tributed densely and the network is either connected or can
be connected with a little perturbation. This constitutes the
Case 1 where the configuration is initially almost or already
connected. We further divide the Case 1 into two subcases
Case 1a and Case 1b. Case 1a corresponds to configurations
that are initially connected almost surely, and Case 1b char-
acterizes dense configurations not initially connected.

We consider the robots are sparsely distributed if L/r is
larger than a constant times n. This will be what we call the
Case 3, and any value of L/r between the two thresholds
will form the Case 2.

To develop an intuition for the separation of these cases
we provide Figure 3. Note that the robots are distributed in
a square-shaped area instead of a circle for illustrative pur-
poses. The environment length L is the grid side length, and
the grid cells have side length r in Figure 3.

Case 1: Dense configuration

In Case 1, we want to find a threshold for the value of L/r,
such that when L/r is smaller than the threshold the initial
configuration is either already connected or close to being
connected.

Already connected configurations We use Result 1 as an
upper bound for Mn. The initial configuration is guaranteed
to be connected when the connectivity radius r is larger than
Mn. Hence, when r is greater than the threshold the con-
figuration is a connected network. Furthermore, if p is the
probability that the inequality in Result 1 holds, then we can
rearrange the relation for a connected configuration as fol-
lows.

L

√
log n− log log 1

p

nπ
≤ r (3)

Using (3) we conclude the threshold value for con-
nectivity in already connected configurations: If L/r ≤√
nπ/(log n− log log 1

p ) then we say the initial configura-
tion is already connected almost always, and belongs to Case
1a.

When the configuration is initially connected, both the op-
timal and our algorithm’s solutions are 0. In this case, the
approximation is 1. We next analyze the Case 1b.

Critical configurations When the robots are distributed
densely but not as dense to make the initial configuration al-
ready connected, there is a range of L/r values correspond-
ing to what we consider as the critical configuration.

This case includes initially disconnected settings with an
L/r ratio smaller than

√
n. For this intermediate range of

L/r values Ganesan proves that with a high probability there
is a giant connected component of G(X ; r) which contains
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Figure 3: Three cases depicting dense, moderate, and sparse configurations in respective order. In these illustrations L denotes
the grid side length, and r is the side length of a grid cell. The L/r ratio is the number of grid cells in a column.

L

Mn

Figure 4: Robots densely distributed in a circular area, initial
configuration is not connected

nearly all the robots (Ganesan 2013). We say a configuration
is in Case 1b if L/r is less than

√
n, but the initial configu-

ration is not connected.
In this scenario the robots are distributed densely, but not

as dense to make the initial configuration already connected.
An instance of this setting can be seen in Figure 4. We next
prove the result for this case.
Lemma 1. There is an O(

√
n)-factor approximation al-

gorithm for the connectivity maintenance problem when
L/r ≤ √

n.

Proof. Notice in Figure 4 that we expect to have a cluster
at every ring since the robots are densely and uniformly dis-
tributed. We verify this as follows. A ring has at least one
robot with a probability proportional to the ring’s area. The
innermost ring has area πM2

n, and the ith innermost ring has
area πi2M2

n−π(i−1)2M2
n = π(2i−1)M2

n. Let k = L/Mn

be the number of rings. Clearly, k cannot be greater than√
n since L/r ≤ √

n and Mn > r. Then, the total area is
πk2M2

n, and the probability of having a robot in the ith ring
is (2i − 1)/k2. A ring has at least probability 1/k2 ≥ 1/n
to contain a robot, and because we have n robots, we expect
each ring to have a cluster.

Moreover, between an attracting and a non-attracting
cluster there are at most 2L/Mn layers of clusters with high

probability, and the distances between these cluster layers
are not larger than Mn.

The attracting cluster is chosen to be near the center of the
SEC of X . Therefore, as clusters connect to the attracting
cluster the inner layers move towards the center. A cluster at
the ith layer moves no more than i(Mn − r) to connect to
the attracting cluster. Since there are at most 2L/Mn layers
of clusters between an attracting and a non-attracting cluster,
the maximum distance traveled by a robot SOL is smaller
than 2L

Mn
(Mn − r).

The solution of the optimal strategy OPT can be lower
bounded with (Mn − r)/2 since the connectivity cannot be
maintained if no robot moves more than that.
Mn is not smaller than r, and the largest value L/r can

get is
√
n. Then we can derive the approximation factor α1b

of Case 1b as follows.

SOL

OPT
≤ 2L(Mn − r)/Mn

(Mn − r)/2
=

4L

Mn
<

4L

r
≤ 4

√
n = O(

√
n)

(4)

Suppose a dense configuration is initially connected with
probability p. Then, with probability 1− p the configuration
is in Case 1b, and we have O(

√
n)-factor approximation.

With the remaining probability the solutions of the optimal
strategy and our algorithm are 0. Thus, the approximation
for Case 1 is E[α1] = p× 1 + (1− p)× α1b = O(

√
n).

Case 3: Sparse configuration

In the third case the robots are sparsely distributed over a
large area. Intuitively, when the configuration is sparse the
optimal strategy has to move the robots towards a center
minimizing the maximum traveled distance.

The center of the SEC of a set of points X is the point
c ∈ R

2 minimizing maxxi∈X ||c− xi||2. We will use the
SEC of the initial configuration for proving the Lemma 2
presented below.
Lemma 2. Suppose the smallest circle C enclosing all the
robots has radius R. There is a (

√
3 + 1)-factor approxi-

mation algorithm when R > nr, where n is the number of
robots, and r is the connectivity radius.

Proof. Let ∂C denote the boundary of C, and suppose there
are k robots on ∂C. By the definition of the SEC, k can vary
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as 2 ≤ k ≤ n. Now consider two subcases: k = 2 and
k > 2.

When k = 2, the line segment between the two robots u
and v on ∂C defines the diameter of C, and the Euclidean
distance between u and v, d(u, v) = 2R.

Suppose x′ denotes the position of a robot x in the final
configuration. In a solution to the connectivity maintenance
problem, distance between a pair of robots can be at most
(n − 1)r. Therefore, the distance between u and v in the
final configuration, d(u′, v′) ≤ (n− 1)r.

Since r > 0, the total movement traveled by u and v is
at least 2R − (n − 1)r ≥ 2R − nr. Hence, the maximum
movement by a robot is at least (2R− nr)/2 = R− nr/2.

Next, consider the other subcase k > 2, that is, there are
more than two robots on ∂C in the initial configuration.

Drager et al. showed that the furthest pairwise distance of
a set of points cannot be smaller than R

√
3, which is the case

when three of the robots on ∂C form an equilateral triangle
(Drager, Lee, and Martin 2007). Using a similar argument to
k = 2 case, we can say the maximum movement traveled by
a robot is at least R

√
3/2− nr/2.

Thus, independent of the number of robots on ∂C, k,
the optimal solution OPT to the connectivity maintenance
problem cannot be smaller than R

√
3/2− nr/2. Noting the

solution produced by our algorithm SOL is at most R, and
R > nr, we calculate the approximation factor α3 of the
third case as follows.

SOL

OPT
≤ R

R
√
3/2− nr/2

≤ 2R

R
√
3−R

=
√
3 + 1 (5)

Therefore, a solution produced by our algorithm is at most
α3 =

√
3 + 1 times worse than that of the optimal strategy.

By Lemma 2, we have a constant factor approximation
when R/r > n. Since we are looking for a threshold value
for the L/r ratio we need a relation between L and R.

One trivial observation is R cannot be larger than L since
the radius of the SEC of a set of points distributed in a
circular area of radius L can be at most L. Furthermore,
the average Euclidean distance between two uniformly
distributed points in a circular area of size πL2 is given
as 128L/45π ≈ 0.9L in (Burgstaller and Pillichshammer
2009). Therefore, the SEC of a configuration with n ≥ 2
robots has a radius R > 0.9L/2 = 0.45L with higher
probability as n increases. Then if 0.45L is larger than nr,
so is R. Thus, we say the configuration is sparse when
L/r > 2.2n, and this bound constitutes the threshold value
for Case 3.

Case 2: Moderate configuration

When the L/r ratio is larger than
√
n but smaller compared

to 2.2n, we consider the initial configuration to be moder-
ately distributed. Any placement that is neither dense nor
sparse is said to be in Case 2. Figure 5 shows the separation
of the cases with respect to the relation between L/r and n.

√
n 2.2n

Dense Moderate Sparse

Figure 5: Classification of the cases based on the relation
between L/r and n

We next present the result for the case when the robots are
moderately distributed.

Lemma 3. There is an O(
√
n/ log n)-factor approxima-

tion for the connectivity maintenance problem when
√
n <

L/r ≤ 2.2n.

Proof. To prove the lemma we need a lower bound for the
maximum movement of the optimal strategy. We will use the
largest nearest-neighbor distance Zn in our argument.

Consider a robot u whose distance to its nearest-neighbor
is Zn initially. Let u′ denote the final position of u. Next,
suppose v′ is a robot connected to u′ in the final configura-
tion, and v is its initial position. The distance between u and
v in their starting locations is at least Zn since the nearest-
neighbor of u is Zn units away. Then we can lower bound
the maximum movement of the optimal solution OPT as
follows.

OPT ≥ max{d(u, u′), d(v, v′)} ≥ (Zn − r)/2 (6)

Since we have Zn for the bound of OPT , a lower bound
for the value of Zn in uniform distributions suffices.

We use Result 2 for lower bounding Zn. For values of
t ∈ R smaller than −1.53 the expression 1 − exp(−e−t) is
greater than 0.99. Then, for a value of t < −1.53 the follow-
ing inequality holds almost always for uniformly distributed
points in a circular area of radius L.

Zn ≥ L

√
log n+ t

πn
(7)

We can then rewrite the lower bound for the optimal solu-
tion.

OPT ≥ 1

2

(
L

√
log n+ t

πn
− r

)
=

L

2

(√ log n+ t

πn
− r/L

)
(8)

Since we are in the Case 2, the ratio of L/r cannot be
smaller than

√
n. Therefore, the lowest value OPT can get

is when r/L is maximized at 1/
√
n.

The maximum movement of our algorithm SOL is at
most R ≤ L. Then we have the following approximation
factor α2.

SOL

OPT
≤ 2√

log n+t
πn − 1√

n

=
2
√
πn√

logn + t − √
π

= O(
√

n/ logn) (9)

For all the values of L/r we have an approximation ratio
O(

√
n). Thus, Theorem 1 follows.
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Figure 6: Average, maximum and minimum values for the
maximum movement of STAR-CONNECT with L = 10, r =
1 and varying n = 10 to 1000.

Simulations

We have conducted a set of simulations in MATLAB to ver-
ify our analysis and the bounds we use from preliminary
works. The robots are deployed according to the model. The
program parameters are the number of robots n, environ-
ment radius L, and connectivity radius r. We distribute the
robots uniformly at random and perform our algorithms to
maintain connectivity.

We first show the individual results of the subroutines
STAR-CONNECT and CLUSTER-CONNECT separately.

We used the STAR-CONNECT algorithm in a circular area
with radius L = 10, and the connectivity radius was r = 1.
Running the algorithm using various number of robots rang-
ing between 10 and 1000, we obtained the result presented
in Figure 6. From the figure we see that the maximum move-
ment of a robot is no larger than R. Furthermore, when the
L/r ratio is 10 the initial configuration is already connected
for values of n starting from 600 as can be inferred from
the analysis, and the likeliness of connectivity increases as
n grows.

We then tested the CLUSTER-CONNECT algorithm in the
critical configuration at different scales. For given values of
n and L, we choose the connectivity radius uniformly at ran-
dom from a range to make the configuration be in Case 1b,
since this is the case with the bottleneck approximation. We
used L = 10 and varying n up to 1000 robots. The result is
presented in Figure 7.

We plot the average value of the maximum movements for
each n, and upper bound it using the approximation ratio we
derived. This result validates the analysis of the algorithm
CLUSTER-CONNECT.

Finally, we present the results for the main algorithm
NETWORK-FORMATION which uses CLUSTER-CONNECT
and STAR-CONNECT as subroutines.

Using an environment length of 10 and connectivity ra-
dius 1 we obtain the result shown in Figure 8. For values
of n smaller than 100 STAR-CONNECT is called, otherwise
if the configuration is not already connected the subroutine
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Figure 7: Average values for the maximum movement of
CLUSTER-CONNECT with L = 10 and varying n = 10 to
1000.
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Figure 8: Average values for the maximum movement of
NETWORK-FORMATION with L = 10, r = 1 and varying
n = 10 to 1000.

CLUSTER-CONNECT is executed. In Figure 8 we also show
the upper bound for the algorithm’s solution using the ap-
proximation factor. The bound becomes negative when n is
larger than 900 since the average value of Mn is below r,
that is the initial configuration is already connected.

Conclusion

In this paper, we studied a novel connectivity formation
problem where we are given initial locations of robots and
a communication radius. The goal is to move the robots so
as to form a connected network while minimizing the max-
imum movement. We focused on uniform random deploy-
ments and presented an O(

√
n)-approximation algorithm

for connecting n robots. The approximation ratio is signif-
icantly better than the O(n) bound available for arbitrary
deployments given by (Anari et al. 2016).

In our analysis, we consider three cases based on the den-
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sity of the deployment. In two of these cases, the algorithm
performs strictly better than O(

√
n). Therefore, there might

be room for further improvements in the analysis.
Another avenue for research is to consider other initial

distributions (e.g. Gaussian). Finally, a challenging but prac-
tically important version of the problem is the online version
where the robots do not know each others initial locations.
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