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Tracking Wildlife with Multiple UAVs:
System Design, Safety and Field Experiments

Haluk Bayram, Nikolaos Stefas, Kazim Selim Engin, Volkan Isler

Abstract— We present a multi-UAV system capable of local-
izing radio tagged animals. Each UAV carries a Yagi antenna
and is capable of obtaining bearing-measurements by using
the directionality of the signal emitted from the tag. In this
paper, we address the following question: given a set of
measurement locations, should the UAVs move in coordination
and obtain synchronized measurements, or should they move
independently? For each scenario, we present a path planning
algorithm. The algorithms are compared in simulations. We also
present a complete system implementation with three UAVs and
results from field experiments.

I. INTRODUCTION

Wildlife monitoring is important for biologists who study
animals and their habitats. The most commonly used tech-
nique for tracking animals is Very High Frequency (VHF)
radio-tracking, also known as wildlife telemetry [1]. This
technique involves attaching a radio transmitter to the animal
of interest and a radio receiver tuned at a specific frequency
frequency. For large animals such as bears and wolves,
the radio transmitter is put on a collar. These collars are
developed to work for long periods of time. However, their
transmission range is only a couple of kilometers. Tracking
wildlife is challenging because the researchers must first
establish contact with the signal in remote and potentially
dangerous animal habitats. Once the signal is detected, the
directionality of the signal is utilized to obtain bearing
measurements. The animal is localized either by converging
to the source of the signal by following its gradient or by
triangulating multiple bearing measurements.

To mitigate some of these challenges, researchers have
started using Uninhabited Aerial Vehicles (UAV) for ani-
mal tracking [2]–[5]. In particular, multi-rotor UAVs can
rotate in-place to take bearing measurements, they are easy
to deploy and relatively inexpensive. Therefore, they have
the potential to be an ideal system for automated animal
localization in hard to access or dangerous areas [6].

However, despite their advantages multi-rotor UAVs have
limited battery capacity which is especially critical consid-
ering that they have to spend significant amount of time
taking measurements. If the targets are highly mobile, tak-
ing multiple measurements become difficult. We present an
energy-aware multi-UAV system which can overcome these
challenges and can localize targets faster and more accurately
over large areas as illustrated in Figure 1.
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Fig. 1. The Multi-UAV Wildlife Tracking Problem: collared animals
are to be localized. The goal is to make use of multiple UAVs in order
to localize the targets in such a way that the localization uncertainty is
below a desired level. In this illustration, the 3-UAV team is taking bearing
measurements (coordinated by the team leader) from their measurement
locations si, si+1, si+2 to localize the collared animals.

It is also possible to use signal strength or time of
arrival to obtain range-related information [7], [8]. Even
though signal strength or time of arrival is a function of
distance, the exact characteristics of the function can be
highly environment dependent and it is difficult to extract
direct range information [5]. In this paper, we focus on
bearing because it is much more reliable and does not require
environment specific calibration.

The problem of localizing targets by actively choosing
measurement locations has been previously addressed in the
literature: In [9], a Lyapunov based approach is proposed
to track a stationary or moving target in a coordinated
manner. In this work, the proposed approach is evaluated
through simulations. The work in [10] proposes algorithms
with proven performance bounds for actively locating a static
target using multiple autonomous surface vehicles equipped
with bearing sensors. In [11], multiple UAVs carrying a
camera are tracking mobile targets using a team of aerial
robots in an indoor setting. The authors present an algorithm
to assign trajectories for each UAV in order to maximize
the tracking quality. In our work, we first present a novel
approach for taking measurements where the UAVs rotate
in place to obtain bearing measurements. We adapt our
previous work [12] to compute measurement locations and
address the following questions: Should the UAVs move
independently to minimize the total (or maximum) tour
length, or should they act together? Coupling the motion
of the UAVs can result in longer trajectories however it can
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also lead to better bearing measurements, hence better local-
ization performance. We present two strategies (one for each
scenario) which are compared in simulations. The proposed
approach is also implemented on multiple quadrotors and its
effectiveness is evaluated through a series of simulations and
field experiments.

Problem Statement: The objective is to compute mea-
surement locations for multiple UAVs so as to localize
animals up to a desired localization uncertainty. Formally,
given an environment T ⊂ R2, compute the measurement
locations S = {s1, ..., sn} and the tour τ visiting them for
each UAV such that the following criteria are satisfied:

• the time spent in visiting these locations and taking
measurements is minimized,

• the resulting localization uncertainty U for each location
in T is below the desired uncertainty U?,

• collision avoidance among UAVs is guaranteed.

The contributions of the paper can be summarized as
follows: We present (i) a planning algorithm using coor-
dinated and non-coordinated data gathering strategies to
localize radio-tagged animals using bearing measurements,
(ii) a comparison of these strategies to show the localization
performance when the target is moving, (iii) the design of a
multi-UAV system with a directional antenna, and onboard
computation and wireless communication capabilities, and
(iv) the implementation of the coordinated data gathering
approach on the multi-UAV system.

II. DATA GATHERING WITH 3k AERIAL ROBOTS

In this section, we present the coordinated data gathering
strategy for multiple UAVs. For simplicity, we assume that
the number of robots is a multiple of three. At a high level,
the 3k robots proceed as follows.

• Determine measurement locations.
– Cover the candidate target areas with measurement

disks with radius R such that the localization un-
certainty is guaranteed up to a certain level within
these disks.

– Compute measurement locations based on these
disks

• Compute trajectories
– Compute a tour for all the centers of the disks
– Split the tour into k sub-tours (one for each aerial

robot team) considering battery constraint
– Compute a trajectory for each robot using their

corresponding sub-tour
• Execute the mission in a coordinated manner

– Follow the assigned trajectories
– Take bearing measurements (each team starts to

take bearing measurements at the same time)
• Estimate the target location

– Merge the bearing measurements
– Localize the targets using the gathered measure-

ments based on the localization uncertainty model

We now elaborate on these steps. First, we introduce
the uncertainty model which measures the localization un-
certainty for given two bearing measurements. Next, we
present how to determine the measurement locations and
tours. Following, we propose the coordinated measurement-
taking approach. Last, we briefly explain how to estimate the
target location using beating measurements.

A. Localization Uncertainty Model

To estimate a target’s location from two bearing measure-
ments, triangulation is the most commonly used approach. In
the absence of measurement noise, the target’s true location
would be found by intersecting two bearing measurements.
However, a real sensor produces bearing measurements cor-
rupted with a noise, which is generally modeled by Gaussian
distribution with known mean and variance. Because of the
presence of noise, the intersection of two bearing measure-
ments does not yield true target location, but estimate target
location with some uncertainty. The geometric dilution of
precision (GDOP) is widely used to measure the uncertainty
of the estimate [13]. Formally, given two measurements from
locations s1 and s2 for a target at location w in a 2D
environment and measurement noise with variance σ2, the
localization uncertainty U is given by [12]

U(s1, s2, w) =
d(s1, w)d(s2, w)

|sin]s1ws2|
πσ2 (1)

where d(si, w) is the distance between the measurement
location si and target location w.

B. Measurement Locations & Tours

In determining the measurement locations for a given
target candidate area, we make use of the sensor placement
scheme in [14]. In this scheme, for a desired uncertainty level
U? and bearing measurement noise variance σ2, when three
measurements are taken from the vertices of an equilateral
triangle whose circumcircle is a disk with radius R′ = R 3

√
4,

the localization uncertainty within the disk D (co-centric
with the circumcircle) with radius R = 2

√
U?/(πσ2) is

guaranteed to be less than 5.5U?.
By covering candidate target areas with disks D, each

disk D ∈ D contains 3 measurement locations. Given the
rectangular candidate target area T , the desired localization
uncertainty U? and the bearing measurement noise variance
σ2, Algorithm 1 computes the measurement disks D and
the measurement locations S located at the vertices of the
equilateral triangles within these disks. A sample scenario
can be seen in Figure 2. Once the measurement disks D are
obtained, a TSP tour τ is generated using Concorde TSP
Solver [15] for the centers of the disks. Then, the tour τ is
split into sub-tours considering either the number of teams
or the energy budget. The general strategy of splitting a TSP
tour into roughly equal size sub-tours is presented in [16]
(Algorithm k-SPLITOUR). When the splitting is done based
on the number of teams and the teams have sufficient energy
to complete each sub-tour, the sub-tours are computed based
on the number of teams. Otherwise, since the energy is not
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Fig. 2. Measurement disks with radius R and corresponding
measurement locations (denoted by stars) for a given rectangular
area T , desired localization uncertainty U? and bearing measure-
ment noise σ. The disks and measurement locations are computed by
Compute-Measurement-Locations (Algorithm 1).

sufficient for any of sub-tours, the splitting is done based on
the energy budget.

Algorithm 1 Compute-Measurement-Locations

Input: T , U? and σ2

1: R← 2
√
U?/(πσ2) {Measurement disk radius}

2: R′ ← R/ 3
√

4 {Radius of circumcircle of the equilateral
triangle}

3: S ← ∅ {Initialize the measurement locations}
4: D ← ∅ {Initialize the measurement disks}
5: ∆d← R

√
2 {Displacement of disks}

6: [x0, y0]← left bottom coordinate of the area T
7: for i = 1 to width(T )/∆d do
8: for j = 1 to height(T )/∆d do
9: [xd, yd]← [x0 + (2i−1)∆d/2, y0 + (2j−1)∆d/2]

10: D ← D∪D([xd, yd], R) {New measurement disk}
11: s1 ← [xd −R′

√
3/2, yd −R′/2] {1st measurement

location}
12: s2 ← [xd +R′

√
3/2, yd−R′/2] {2nd measurement

location}
13: s3 ← [xd, yd +R′] {3rd measurement location}
14: S ← S ∪ {s1, s2, s3}
15: end for
16: end for
Output: D and S

C. Coordinated Data Gathering

If the targets to be localized are stationary, the mea-
surements do not have to be synchronized. Therefore, the
time at which the measurement are taken do not have
any effect on the estimation of the target location. If the
targets are moving, three measurements taken at different
times for a measurement disk may become inconsistent.
To minimize this effect, we assign 3 robots to each tour.
The robots synchronize their measurements. We choose
one robot of the team as the leader, which is responsible
for coordinating the whole team. The leader and mem-
bers execute a finite state machine with six states (IDLE,

(a) Task Coordinator (b) Task Handler

Fig. 3. (a) Finite state machine which the leader executes for coordinating
its team. At each state, the leader broadcasts corresponding commands to
its members and waits for responses from the members that the command
has been executed. (b) Finite state machine which the task handler executes
for the localization task. State transitions occur when the corresponding
command is received.

TAKE-OFF, GO-TO-WAYPOINT, TAKE-MEASUREMENT,
GO-HOME, LAND) as shown in Figure 3. At each state, the
leader sends the relevant command to the team and goes into
the waiting-mode. Once the members execute the command,
they send back the message that they have completed the
command. When the leader receives command-completion
messages from all the members, the state transition occurs,
and then the leader sends the next command to the team. The
collision avoidance is accomplished by assigning different
altitudes to each robot. During the mission, they fly at their
predefined altitudes.

At the beginning of the mission, all the robots are in IDLE
state. When the leader receives the start-mission command
from the ground station, it sends the take-off command to the
team and the team goes into TAKE-OFF state. After all the
robots take off and send the take-off completion message to
the leader, the leader send the go-to-waypoint command to
the team and the team goes into GO-TO-WAYPOINT state.
After reaching the waypoint, the robots send the command
completion message to the leader. Once the leader receives
all the completion messages from the team, it sends the take-
measurement command to the team and the team goes into
TAKE-MEASUREMENT state. Therefore all the members in
a team start taking bearing measurements at the same time.
GO-TO-WAYPOINT and TAKE-MEASUREMENT states are
repeated until the mission is done or the leader receives an
insufficient battery message. In case of insufficient battery,
the leader sends the go-home command to the team and then
coordinates the landing.

D. Estimating Target Location

After completing the mission, from each disk D, we have
three bearing measurements taken from locations s1, s2 and
s3 at the vertices of the equilateral triangle inside the disk
D. For each triplet of bearing measurements, we choose
the best pair, which is the pair with the lowest localization
uncertainty, in order to estimate the target location:
• Intersect each measurement pair i and j in order to get

the estimate location wi,j of the target.
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TABLE I
LOCALIZATION ERROR (MEAN & STANDARD DEVIATION) FOR

COORDINATED & NON-COORDINATED APPROACHES

Target speed
1 m/sec 2 m/sec 4 m/sec

Coordinated 15.0 - 22.8 16.4 - 24.1 17.6 - 26.8
Non-coordinated 16.9 - 23.5 24.7 - 29.8 36.5 - 37.8

• To evaluate these three estimates, the localization uncer-
tainty Ui,j for each estimate is computed using Equation
1.

• The smallest of the localization uncertainties Ui,j is
chosen to compute the final estimate location of the
target.

III. SIMULATIONS

In this section, we investigate the benefits of coordination.
For this purpose, we compare the coordinated approach with
the non-coordinated one in which the tours are computed for
all the robots by considering the energy constraint and there
is no synchronization in taking measurements.

We run coordinated and non-coordinated approaches 1000
times for the varying target speed v = 1 m/sec, 2 m/sec,
4 m/sec. The target performs a random walk within the
candidate target area. In the work [3] on Minnesotan bears’
behavioral response to aerial vehicles, a maximum movement
rate increases up to 2.3 m/sec when the UAV is near of the
bear. Since one of the goals in this work is to localize bears in
Minnesota, we choose the varying speed levels for the target
as consistent with the bears’ movement. The other parameters
are chosen as follows: the bearing noise σ = π/6 radians,
desired localization uncertainty U? = π102 (corresponding
to the area of a disk with radius 10 meters), and the candidate
target area 360×205 m2. The UAVs can fly at a speed of 5
m/sec for 10 minutes. Each measurement takes 2 minutes.
For target localization, the estimation method in Section II-D
is used.

The simulation results for the localization error (mean and
standard deviation) are presented in Table I. For low target
speed, the localization performance of the approaches are
similar. When target speed increases, the non-coordinated
approach deteriorates more than the coordinated one.

Figure 4 shows the results obtained when the target speed
is 4 m/sec. Since the coordinated approach can locate the
target up to a localization error of 10 meters in most of
the trials, it can be said that the faster the target moves
the more the coordinated approach outperforms the non-
coordinated one. The increase in the target’s speed does
not affect the localization performance of the coordinated
approach as much as the non-coordinated one, which means
the coordinated approach is more robust to the change in the
target’s speed.

IV. SYSTEM DESCRIPTION

In this section, we describe the hardware and software
infrastructure of the system.
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Fig. 4. Localization errors for coordinated and non-coordinated approaches
when the target performs a random walk at the speed of 4 m/sec.

Fig. 5. Three aerial vehicles with a 3-element Yagi antenna mounted
underneath.

A. Hardware Components

This work requires multiple aerial vehicles capable of
autonomous navigation, onboard computation and wireless
communication. The aerial robotic vehicles developed for
this work are based on the quadrotor DJI Matrice 100
shown in Figure 5. A GPS and compass module provides
autonomous GPS waypoint navigation with a horizontal and
vertical hovering accuracy of 2.5 and 1 meters respectively.
Maximum hovering time was measured at 12 minutes. Each
system is equipped with the NVIDIA Jetson TX1 acting
as the onboard processor and running an Ubuntu Linux
operating system. The robots can communicate with each
other over a wireless local network, which is established by
a Wi-Fi router mounted on one of the robots. In case of any
unexpected behavior that is observed from any of UAVs, the
mission software can be overridden by the remote-controller.

Signal detection is enabled through a Yagi antenna lo-
cated at the bottom of the UAV. An RTL-SDR USB signal
receiver is deployed for analog-to-digital signal conversion
for RTL2832 based DVB-T receivers with an IQ data format.
The signal transmitter (animal’s collar) is a Telonics MOD-
500 VHF 163.900 MHz radio transmitter and operates in two
modes: active and inactive. In active mode 80 pulses of 15
msec width are transmitted every minute. In inactive mode
the transmitter conserves energy and the number of pulses
drops to 40 per minute.

B. Software Modules

Since our aerial platforms provide ROS interface with
the hardware components, we developed a ROS-based soft-
ware with “Communication Node”, “Task Handler Node”
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and “Task Coordinator Node” (Figure 6) to implement the
proposed approach. The ground station is used to start the
mission by sending a start-mission command to the leader.

Fig. 6. ROS-based software architecture. The leader has an additional node
named as “Task Coordinator” running the finite state machine in Figure
3(a). Each team member has the node “Task Handler” running the finite
state machine in Figure 3(b).

The communication nodes differ based on whether the
UAV is leader or not. While the leader UAV establishes
two-way TCP socket with the member UAVs and the ground
station, the member UAVs connect only to the leader. So, the
resulting network topology becomes a star topology where
the leader is in the center.

The leader has also an additional ROS node (Task Coordi-
nator) which is responsible for coordinating the mission. This
node runs the state machine depicted in Figure 3(a). Task
Handler node executing the finite state machine in Figure
3(b) is common to all the UAVs.

To capture the received signal from the antenna, we use
rtl sdr software package [17], which is an IQ recorder
for RTL2832 based DVB-T receivers.

V. FIELD EXPERIMENTS

We have conducted four sets of field experiments at
Cedar Creek Ecosystem Science Reserve where the wildlife
biologists plan to tag wild animals with VHF collars: (1)
coordinated navigation, (2) single stationary target local-
ization, (3) multi-target localization, and (4) localization
of a moving target. The collar was deployed at a known
location within the candidate target area. The bearing noise
standard deviation was set to σ = π/6 radians. The desired
localization uncertainty U? was set to 100π and 56π m2

for the stationary target experiment, and multi-target and
moving target experiments, respectively. These uncertainties
correspond to the areas of disks with radius 10 meters and 7.5
meters. Given the candidate area, U? and σ, the measurement
locations and corresponding routes are generated as shown
in Figure 7.

To see the effect of altitude variation on the measurements,
we placed the collar 300 meters away from the UAV, then
took bearing measurements for 10, 15 and 30 meter altitudes.
The results reveal that the higher altitude provides more
reliable bearing measurements. For the safety, the altitude
difference between neighboring UAVs is chosen as 10 me-
ters. Therefore, the altitudes for UAVs are set to 30, 40, 50
meters.

First, we tested the performance of the coordinated naviga-
tion in which the UAVs execute their mission without taking
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Fig. 7. Measurement locations and tours for each UAV. As described
in Section II-B, given a rectangular candidate target area, six disks are
generated to cover the area and three measurement locations are determined
for each disk.
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Fig. 8. Experiment for coordinated navigation. The UAVs navigate to the
measurement locations in a coordinated manner (as described in Figure 3)
without taking measurements. They can visit all the measurement locations
with one battery since they do not take measurements.

measurements. In this experiment, the leader coordinates the
whole mission. As shown in Figure 8, the UAVs completed
the coordinated mission successfully.

Second, we run the full algorithm to localize one stationary
target in an area of 160×105 m2. After taking the third
measurement, one of the UAVs sends the low battery mes-
sage to the leader. Then, the leader broadcasts the go-home
and land commands. After replacing the batteries, the team
continues their mission from the next measurement location
and completes the whole mission within 15 minutes. The
resulting trajectories can be seen in Figure 10. The error on
the target localization is about 29 meters.

Figure 9 shows the bearing measurements taken from
the measurement locations. Using the estimation method
described in Section II-D, the target location is estimated
from these measurements.

Third, we conducted multi-target localization experiment.
In this experiment, the three radio-tags with different trans-
mitting frequencies are placed in the known locations. The
UAVs take bearing measurements for each tag frequency
from the vertices of the triangle. The localization results
are shown in Figure 11. The bearing measurements are
denoted by red line. Circles and crosses represent the true and
estimate target locations, respectively. The UAVs estimate the
tags with the localization error of 18.2 meters, 3.7 meters and
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Fig. 9. Bearing measurements (red lines) taken for one stationary target
from the measurements locations (stars). Circle and cross signs denote the
true and estimate target locations, respectively.

Fig. 10. The UAVs’ trajectories in the experiment of localizing one
stationary target.

10.7 meters.
In the last experiment, a person carrying the collar follows

an arbitrary trajectory with an average speed of 0.56 m/sec
in an area of 40×120 m2. The GPS location of the person
is recorded as ground truth. UAVs take measurements from
three triangles which are given different colors in Figure 12.
The target trajectory is colored according to the triangles
the UAVs are at that particular time. The UAVs take one
measurement from each of location and obtain an estimate.
The estimates of the target location are plotted as crosses for
each measurement set.

VI. CONCLUSION

In this paper, we presented a novel multi-UAV system that
can localize VHF radio collared animals. At a high-level the
data gathering strategy is to compute measurement locations
along with tours to visit them. Each tour is assigned to a team
of three robots. The teams operate independently. The three
robots in each team execute a coordinated strategy in which
the leader signals when to navigate to the next measurement
location, take measurements, and when to go home in case
of emergency. It was shown that the coordinated motion
outperforms the non-coordinated motion in terms of the
localization quality when the target is moving. We also
validated the system in a series of field experiments using
three autonomous aerial robots equipped with an on-board
computer, directional antenna, and signal receiver.

In our future work, we plan to speed up the measurement
process by eliminating the need to stop and rotate in place.
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Fig. 11. Experiment for localizing multiple radio-tags. Each UAV takes one
measurement for each of three radio-tags from their measurement location.
Some of these bearing measurements coincide with one another. The bearing
measurements are denoted by red line. Circles and crosses represent the
true and estimate target locations, respectively. The estimate locations of
the tags 1 and 2 coincide with each other. The radio-tags are located within
the localization error of 18.2 meters, 3.7 meters and 10.7 meters.
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Fig. 12. Experiment for localizing a moving target. Measurement locations
are denoted by stars and the estimate target locations are represented as
crosses. The target is moving with an average speed of 0.56 m/sec in an
area covered by three measurement triangles (nine measurement locations).
The three measurements from each triangle generate an estimate location
shown in a dedicated color (purple, cyan, yellow). The target’s trajectory
is colorized based on location (current triangle) of the UAVs. The target
follows the black part of the trajectory when UAVs are moving.

We will also replace the Wi-Fi module with an XBee module
in order to have more reliable and long range communication.
From the theoretical point of view, we would like to obtain
performance bounds on the cost and quality of the tours
in terms of localization time. Our previous work in the
domain [18], [19] for single robots will provide a starting
point.
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