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Abstract. Consider a mobile robot tasked with localizing targets at
unknown locations by obtaining relative measurements. The observations
can be bearing or range measurements. How should the robot move so
as to localize the targets and minimize the uncertainty in their locations
as quickly as possible? This is a difficult optimization problem for which
existing approaches are either greedy in nature or they rely on accurate
initial estimates.

We formulate this path planning problem as an unsupervised learning
problem where the measurements are aggregated using a Bayesian his-
togram filter. The robot learns to minimize the total uncertainty of each
target in the shortest amount of time using the current measurement
and an aggregate representation of the current belief state. We analyze
our method in a series of experiments where we show that our method
outperforms a standard greedy approach. In addition, its performance is
comparable to that of an offline algorithm which has access to the true
location of the targets. E|

1 Introduction

Environmental monitoring is an application area where robotics can have a major
impact. Robots can be used for gathering data, collecting samples and perform-
ing surveillance across large environments over long periods of time. A practical
problem of interest is the localization of animals in the wild who have been
previously radio-tagged by wildlife biologists. The animals can be localized by
mobile robots which can obtain bearing measurements using a directional an-
tenna. Figure [1| shows two examples of such platforms built by our group.

In this paper, we study the problem of localizing multiple targets given noisy
measurements of their locations relative to a robot. In particular, we study the
bearing-only and range-only measurement models which are commonly encoun-
tered in practice. For both of these models, the mathematical form of the localiza-
tion uncertainty given the true target location and robot measurement locations
is well established (Section . However, computing the measurement locations
is hard when the true location of the target is unknown or if there are multiple
targets.

! More information available at https://ksengin.github.io/active-target-localization/
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Fig.1: The target localization problem: given noisy relative measurements,
the goal is to localize the targets as quickly as possible using a robot, possibly
with complex dynamics such as a quadrotor (left) or surface vehicle [1] (right).

Existing methods described in Section [2] mostly focused on the case where
there is only a single target. Moreover, most of them are suboptimal greedy
strategies, optimizing the mutual information or entropy at each step locally.
This approach is however susceptible to getting stuck in local minima when the
best next steps are in conflicting directions. Other approaches rely on accurate
initial estimates, which may not be available in general settings. We show that
instead of using a local greedy approach, long-term planning strategies which
maximize the expected rewards can help the localization system. We assume
all the targets to be initially observable, therefore we do not address the search
problem. However, a noisy initial observation of the target can result in arbitrar-
ily bad initial estimates. Our method is able to accurately localize targets using
a bearing-only sensor with noise level up to 30° angles, and range measurements
with up to 30 meters of error in a 200 x 200 m? area.

Our work lies in the class of model-free Reinforcement Learning (RL), where
the robot learns to accomplish a given task in a fixed time-horizon without
using prior information about the environment or robot dynamics. In contrast
to model-based methods, this approach does not use an engineered or a learned
dynamics model. Instead, it directly optimizes its policy through a sequence of
trial-and-error process [2].

While the policy learning is performed in a model-free fashion, our method
uses a representation of the environment that encapsulates the sensor modality
and the uncertainty of the estimations. Specifically, we use a top-down image
of the environment where the intensity of each pixel indicates the likelihood of
that point being the position of the target. As the sensor noise increases there
are more pixels indicating a high likelihood of containing the target.

2 Related Work and Contributions

The problem of localizing targets has received significant attention and been
studied in several different settings. In this section we go over three different
scenarios where each setup has a different set of assumptions about the target
and sensor mobility: a) sensor placement, the problem of deploying a group of
static sensors to localize static targets; b) active target localization, the problem
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of localizing static targets with mobile sensors; and ¢) active target tracking, the
problem of tracking mobile targets with mobile sensors.

2.1 Sensor Placement

In the sensor placement problem we have a group of static targets whose positions
are unknown residing in a given candidate area and an uncertainty model. The
goal is usually to minimize the number of sensors deployed in the area given a
desired uncertainty level [315], or to optimize the sensor-target geometries after
fixing the number of sensors [6]. Both the targets and sensors are assumed to
be static in this setting, and a greedy approach is shown to have a near-optimal
performance [3]. The results in this setting, however, are not directly applicable
to the case when the targets or sensors are moving.

2.2 Active Target Localization

In the problem of active target localization, one or multiple mobile robots need to
localize the targets as quickly as possible. In [7] a method is proposed to perform
target localization with bearing measurements using the Fisher information to
optimize the trajectory of a single aerial vehicle. A cooperative algorithm is
presented in [1] to localize a static target using two robots with communication
constraints. The robots in this work need to periodically meet to update their
estimate of the target position. [8] studied the case where an unknown number
of targets are localized with a team of robots. It also addresses the problem of
data association, that is the measurements do not have unique identifiers.

2.3 Active Target Tracking

In the active target tracking problem, both the sensors and targets are able to
move. The target motion can be modeled in various ways and this model plays
an important role in the performance of the tracking system. One approach is to
treat the target motion adversarial, which means that the target actively evades
the sensor [9,/10]. Another approach can model the motion of the target to be a
random walk, especially when there is no prior information about the mobility
of the target [11,|12]. The mobility is modeled by a 2D Brownian motion in [13]
where the target can move within a bounded region.

For this problem setting, most of the existing approaches use a position-
based measurement model |[14-17]. This enables the robot to estimate the target
positions with a few observations, unlike using bearing or range measurements
where the geometry of the sensor-target configuration significantly impacts the
accuracy of the estimator.

2.4 Statement of contributions

Our contributions can be summarized as follows.
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— We propose a novel RL formulation of the multi-target localization problem.

— We present a representation to model the localization estimates for each
target encapsulating the uncertainty in the predictions.

— We compare our RL algorithm against a greedy approach that uses local
observations to plan the sensor motion, and an offline algorithm which has
access to the true positions of the targets.

3 Preliminaries

The setup in our problem consists of a tracker robot with an omnidirectional
bearing or range sensor and a set of m targets deployed in an environment V. The
mobility of the robot is modeled to be holonomic, that is it can do instantaneous
turns without any kinematic constraints. We denote the position of the robot at
time t by p; € R2. Similarly, the locations of the targets are q = {q1,...,qm},
where ¢; € R?, and the predicted positions of the targets are q. The trajectory
of the robot until time step ¢ is denoted by P;.; = p1,...,p:. Throughout the
paper we use a global frame, such as the initial coordinate frame of the robot to
denote the positions of the robot and targets.

The true bearing direction from a sensor location p = (p®,p¥) to a target
location ¢; = (¢¥,q;) is denoted by ¢; = ¢(p, ¢;) and expressed as:

¢ = arctan ((¢/ —p")/ (¢ — p"))- 1)

We assume that the measurement model has a Gaussian distribution noise.
Then, a bearing measurement from a sensor can be written as (ﬁl = ¢; +e, where
e ~ N(0,02) and o2 is the variance of the sensor measurement error. We denote
the set of bearing measurements acquired from a robot position p; at time step
tby by = {d1,... dum}.

The distance between a sensor p and a target ¢; is denoted by d; = d(p, ¢;).
Similar to the bearing measurement model, we assume a normally distributed
zero-mean noise for the range measurements. A range measurement at time ¢t is
expressed as d; = d; + e, where e ~ N/ (0,02). Throughout the paper we denote
the relative noisy measurements by Z;, and use &i or d; to indicate a specific
sensor model. The set of relative measurements at time ¢ is denoted by 2.

3.1 Uncertainty Measures

In this section we describe the uncertainty measures used in the paper.

Fisher Information Predicting a target location using relative measurements
is typically achieved by triangulation from multiple positions. Quantifying the
accuracy of the triangulation relies on the geometry of the sensor-target config-
uration and the noise in the sensor measurement.

For a given sensor-target geometry and a noise level in the measurements,
we can use the Fisher Information Matrix (FIM) to compute the amount of
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information given by the measurements. The FIM characterizes the amount of
information an observable parameter carries about an unobservable variable. In
our case, the observable parameter is the relative measurement and the unob-
servable variable of interest is the position of the target.

Suppose F; is the FIM for a given sensor-target configuration, where ¢* is
the true location of the target. The (i, 7)-th entry of F, for a single target can
be expressed as:

(Fos = B[ 5 W®(El0) 5 w(P(Ela)] @)

where P(-) denotes the probability density function. The determinant of the
FIM is inversely proportional to the uncertainty area of the estimation [18,/19].
The determinant of F, for n bearing measurements is given by [20]:

1 sin®(é(pi, ¢*) — d(pj q*)) . .
R : 0 1< (3)
' ; {m%eP d(pi, q*)? - d(p;, q*)?

where 02 denotes the variance of the measurement error, and P defines the
set of all pairwise combinations as {{p;,p;}} with i,5 € {1,...,n} and i < j.
The inverse FIM F; ' (also known as the Cramer-Rao inequality lower bound)
quantifies an uncertainty ellipsoid for unbiased estimators. The square root of
the eigenvalues of F~ 1 denoted by v/); defines the axis length of the ellipsoid
along the i-th dimension.

The determinant of F° ! provides a scalar for measuring the uncertainty. For
a given sensor-target geometry and a measurement model, we measure the total
uncertainty by:

U(P,q) = Z det(F, ). (4)

Since the true position of the target is required to compute the Fisher in-
formation, it is challenging to obtain an accurate uncertainty estimate based on
the Fisher information in practical scenarios. The next uncertainty measure we
present is better suited for practical applications where we do not have access
to the true positions. We use the Fisher information as an uncertainty estimate
in the offline case where the true position of the targets are available to the
algorithm.

Bayesian Histograms In Bayesian histograms we discretize the environment
V into a grid, where each cell of the grid indicates the likelihood of being the
target position given the measurements. Bayesian histograms are particularly
useful to represent the likelihood posteriors for models with nonlinear dynamics.
Filtering techniques relying on linearization, in general are sensitive to distur-
bances when using a nonlinear sensor model like bearing measurements. Without
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accurate initialization, the measurement errors can easily lead to a poor local-
ization performance. Several existing methods [21,[22] have also used Bayesian
histograms for the problem of target localization.

Since the measurement model assumes a zero-mean normal distribution for
the sensor noise, we can compute the probability of a point v being the true
target location ¢* given a relative measurement 2 as:

1 1 N2
v LA REE LR NGO
where z, is the true angle ¢(p, v) or distance d(p,v) between the point v and

a robot position p. Over the course of the robot’s trajectory, the likelihood of a
point is updated as measurements are obtained:

P(v=q"|p.2) = f(z]2,07) =

T
P(v = ¢"|Prr, 217) = [ [ f(2(08, ) |2k, 02). (6)
k=1

Ci=1 S t=4 =8 S =12

Fig. 2: The Bayesian histograms computed by aggregating the bearing measure-
ments taken from the sensor trajectory shown in red. The blue dot corresponds
to the true target location, and the darker to brighter colors in the heatmap
indicate an increase in the likelihood.

At each measurement update, the probabilities are normalized such that
max,cy P(v = ¢*|P1.7, 21.7) = 1, where V is a given domain for the target po-
sitions. We use the max operation to represent relative probabilities per each
bin in the histogram and for numerical stability. When initializing the heatmap,
we use a uniform distribution of probability 1 indicating that each point in the
domain is equally likely to be the true position of the target. We denote the
histogram at time step ¢ for a target q; as H;(Pi.t,21.,%). The histograms are
updated separately and stacked as a tensor H;(Pi.¢,Z1.t) € R™*WxH The his-
togram dimensions W x H determine the granularity of the grid discretization of
the environment and result in a trade-off between accuracy and efficiency. Finer
resolution histograms have smaller discretization errors at the cost of higher
computational resources. An instance of the Bayesian histogram representation
is shown in Figure [2| At each time step the bearing measurement is incorpo-
rated to update the likelihood of the points in V. The sensor trajectory and
target position are overlaid in the heatmap figures to give context.
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3.2 Reinforcement Learning

In Reinforcement Learning (RL), we have an agent sensing and acting within an
environment over a course of discrete time steps. At each time step, the agent
observes the current state of the environment and performs an action. Depending
on the current state and action pair, the state changes and the agent receives a
reward according to an environment model [2].

These type of problems are usually formulated as Markov Decision Processes
(MDP) described by states s € S, actions a € A, transition dynamics 7T :
SxAxS — [0,1], a reward function 7 : S X A x § — R, and a discount
factor v € [0,1]. For the case when the agent cannot fully observe the states,
this description is redefined as a Partially Observable MDP (POMDP), where
there is also an associated observation function.

The agent selects actions using a policy 7(a|s) so as to maximize the expected
v-discounted future rewards given by Gy = E[ZiT:t Yt (s, iy 8i41)], where
T is the planning time-horizon. Suppose that Q™ (s,a) is the expected future
returns by taking the action a in state s using the policy 7, which is expressed
as Q™(s,a) = E[Gy|s; = s,a; = a]. The goal of RL algorithms is to learn an
optimal policy 7* that maximizes the expected future returns for all state and
action pairs. A popular method for this problem is Q-learning [23], where the
Bellman equation,

Q(st,a1) = Ey(s,,y|sr,a0) [1 (56, a1, 8041) + ymax Q(st41,a")], (7)

is recursively used to adjust Q™ to approach the optimal Q-values for 7*. When
the state and action spaces are large, this value function can be approximated
as a neural network Qg (s, a), with parameters 6.

4 Problem Statement

We are now ready to formally state the problem studied in this paper.

Problem 1 (Target Localization). We are given a mobile robot equipped
with a sensor obtaining relative measurements according to a known measure-
ment model, a starting position p;, a fixed planning horizon 7" and a set of
targets whose positions are unknown. We assume that each target transmits a
unique signal, thus there is no correspondence problem for the measurements.
In addition, we are given a function U (P, q) measuring the uncertainty of the
target estimates for a given sensor-target geometry and a measurement model.
The goal is to find a path Py.;p = p1,...,pr for the robot such that the total
uncertainty of the target positions Y ;" U(Pi.7, ¢;) is minimized.

5 Method

Our method, what we call Active Target Localizer (ATL), uses two different
models to represent the state. In this section we go over these representations
and present our unsupervised learning method for target localization.



8 Selim Engin and Volkan Isler

ag
- Robot
RL Agent
e Dynamics
<1
Target
<— .
Dynamics
Z
Image Heatmaps m

Fig.3: Method overview: A single iteration of the robot-environment inter-
action. The blue arrow indicates the relative measurements vector used in the
multi-modal representation, while the red arrow marks the image used as the
observation in the image representation.

An overview of our method is shown in Figure [3] At every iteration, the
robot acquires noisy measurements from the target locations according to the
measurement model. The measurements are either taken as raw observations, or
they are aggregated into a single image representation (shown in blue and red
arrows, respectively). Depending on the observation, the agent selects an action
which drives the robot to a new position. The measurements are accumulated in
the form of heatmaps at each step, which are then used to predict the position
of the target. This process repeats until the end of the planning time-horizon.

5.1 Representing the observations

We start with describing the representations we use for the target observations.

Multi-modal representation The first representation our method uses is a
multi-modal Gaussian distribution for characterizing the localization belief. At
each step, the robot receives a distinct bearing or range measurement from all
the targets (i.e. perfect assignment). The sensor noise o, is assumed to be known,
therefore we are able to represent the likelihood distribution over the domain V.
We construct the likelihood of each point v € V as the normalized probability
f(20]2,02), where 2 is the observation for a single target.

In a standard Markov process, at any time step the next state depends on
the current state and the action. For localizing the targets, the robot needs to
maintain an estimate of the target position using observations from the past
locations. Hence, we append the predictions for the target positions to the state
vector so as to select the next actions.

The augmented state of the system is defined as s; := (py, 2¢, §;) € R2Hm+2m,
concatenating the position vector of the robot p;, observations from each target
7+, and a flattened vector of the predicted positions of the targets q;. In the
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multi-modal representation, we use the noisy bearing ¢; or range measurements
d; as the observation vector z;.

Image representation We also use images to represent the belief for the pre-
dicted position of the target. The image Z, € RW*H at time step t is computed
by the sum of histograms maintained for each target estimate, expressed as:

Z; = ZHt(Pl:ta Z1:4,1). (8)
i=1

The image is then normalized to have values in the range [0, 1], and resized
into a desired resolution with bilinear interpolation. We use a convolutional
neural network with the ResNet-34 architecture [24] followed by three fully con-
nected layers to encode Z; into a latent vector Iy € R®. For all our experiments,
we set the dimension of the latent code to be ¢ = 128. This encoding vector
implicitly describes the uncertainty level and the position estimates for all the
targets in a latent space.

The state vector we use in the image representation is expressed as s; :=
(pt,1;) € R?T¢ a concatenation of the position vector p; and latent code I;.
The RL algorithm we present next inputs the state vector corresponding to the
desired observation representation.

5.2 Learning target localization

We build our method on the Twin Delayed Deep Deterministic (TD3) algorithm,
a deep reinforcement learning algorithm introduced in [25] that uses policy gra-
dients to directly optimize the policy network. Similar to the Deep Deterministic
Policy Gradient algorithm [26], TD3 uses an actor-critic architecture that jointly
learns an actor 7, (the policy) and a critic function Qg (the value function) mod-
eled by neural networks with parameters ¢ and 6, respectively.

A replay buffer is maintained to store the previous interactions of the agent,
as in the Deep Q-Network algorithm [27]. The replay buffer stores samples in
the form of (s;, a;, sit+1, 7i, yi) tuples, where each sample is associated with a
state transition from s; to s;41 by executing the action a;. With this transition,
the agent receives a reward r;, and the termination of the episode is indicated
by a label y; € {0,1}. To prevent the over-estimation bias of the value function,
TD3 trains two (twin) critic networks that are updated at different (delayed)
frequencies and uses the minimum of the two as the value estimate. In our
notation, minj—; » Qy, (s, a) is replaced by Qq(s,a) for brevity.

For both the actor and critic, periodically updated target networks m, and
Qo' are also used. Constraining the change in the target networks to be slow
helps the stabilization when learning the actor and critic functions.

The actor and critic networks are trained with the Adam optimizer [28]
using the loss functions Lgetor and Lepiti Over mini-batches of size B. The loss
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functions are given by:

Lactor = % Z _Q9<Si; W@(Si)) (9)

B
Leriie = 35 3 [Qulsis) = (i 90 = 1) - Qs mor(sicn))) - (10)

Intuitively, the actor network 7, is trained to maximize the Q-values gen-
erated from the action m,(s;) given a state s;, by minimizing —Qg(s;, T, (s:)).
On the other hand, the critic network is trained to minimize the Bellman error
computed by a variation of the Bellman equation given in Equation . During
the training process, the slowly changing target networks are assumed to char-
acterize the optimal policy and the Q-function. The policy 7, inputs the state
vector s; according to the observation representation and outputs an action ay.
This action is a heading angle in the continuous space represented in the inertial
coordinate frame, taking values bounded as a; € [0, 27).

Reward functions For learning the policy we use two different reward func-
tions, one for each observation representation. In the multi-modal representation,
the reward is the negative mean squared error between the true and predicted
target positions, expressed as —1/m - >_7" ||q; — &;||*.

For the image representation, on the other hand, we simply use the mean of
the image intensities as the loss term. The reward function we use is given by
—ﬁ -Zu’v Z:(u,v), where the pixel intensities of the image are all non-negative.
Maximizing this reward function minimizes the likelihood of parts of the envi-
ronment ) not containing the targets, which in turn amounts to minimizing the
total entropy of the Bayesian histograms. The reward function does not use the
true position of the targets, thus it is unsupervised.

6 Analysis

In this section we evaluate our method ATL with a set of experiments. The
experiments are designed around questions concerned about the performance of
our method compared to several baseline approaches.

6.1 Offline Trajectory Optimization

We first investigate whether we can generate optimal trajectories for a robot to
minimize the uncertainty, given the true position of the targets.

This problem has been addressed in two recent papers for bearing [29] and
range-only [30] measurement models, where they study the optimal one-step
action for the sensor so as to maximize the information about the target esti-
mate. The cost function they provide for one-step maximization has the form:
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Jy = sin(¢(pi—1,9) — ¢(pt,q))?/d(pt, q)?, which is used to select the best ac-
tion to move the sensor from position p;—; to p; when using bearing mea-
surements. This expression closely resembles the geometric dilution of precision
(GDOP) [31], commonly used in navigation systems. The uncertainty estimate
using the GDOP function for a given sensor-target geometry is given by:

d(pi, q) - d(pj, q)
| sin(é(pi, q) — ¢(ps, @)|

The offline algorithm we compare against is based on the minimization of
the uncertainty measure U(P, q). This measure is equal to a constant times the
GDOP function summed over all pairs of the measurement locations P. We call
this offline algorithm OFFLINE-FISHER and present it in Algorithm [T}

Ucpopr = (11)

Algorithm 1 OFFLINE-FISHER

Input: U: uncertainty function , q: target positions, T": time horizon, d,: step size
Output: Pi.7: a trajectory for minimizing the uncertainty of the target estimates
1: p1 < Starting position of the robot

2: fort < 2to T do

3 a;y < argming,ea Yo U(Pr—1 U{pe}, @)
4: p; + Op - [cos(a}‘); sin(aZ)]; Piy + Py U{pi}
5

: return Pi.7

6.2 Localizing Static Targets

In practical settings, the true location of the targets are not available to us,
therefore the algorithm needs to operate under uncertainty. The second method
we compare against is a local greedy approach which chooses an action to mini-
mize the conditional entropy given the past measurements of the targets, at each
step. This approach is commonly used in practice and it resembles e.g. [32].

In this section we present experimental evaluations comparing our method
against OFFLINE-FISHER and the local greedy algorithms. Specifically, we inves-
tigate the contribution of having expected future rewards in the cost function,
in contrast to optimizing only the next step.

The environment used in our experiments is a 20 x 20 square area. The robot
step size is set to be 0.5 units, and the planning time-horizon is 50 steps. Variance
of the sensor noise for bearing measurements is 02 = 0.2 which corresponds to
about 11°, and for range measurements it is 1. Each unit in the histogram has
a resolution of 10, thus the dimensions of H; are 200 x 200.

Localization of two targets with bearing and range-only measurements using
the image representation is shown in Figure [l The figure shows the measure-
ments acquired from the targets by the robot, and its trajectory to minimize the
uncertainty of the predictions by using the corresponding images. We see that
the learned policy is able to generate smooth trajectories that can accurately
localize multiple targets.
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o

a) Target localization with bearing measurements

MERE

b) Target localization with range measurements

Fig.4: The trajectory of the robot acquiring bearing (a) and range (b) mea-
surements, using the image representation. Both rows show the robot trajectory
(red), true (blue) and predicted (yellow) target position, also the Bayesian his-
togram as the colored heatmap. The insets contain the images taken as input to
the network at corresponding instants. Best viewed in color.

We provide quantitative results for the localizing the targets using bearing
and range-only measurements in Figure |} The plots show the mean localization
error using four methods, averaged over 100 episodes. We compute the localiza-
tion error by finding the point with the highest likelihood from the uncertainty
histograms, and use it to calculate the mean distance error between the pre-
dicted (q) and true (q) target positions. We observe that both representations
we use outperform the greedy strategy over the course of an episode, and have
a performance very close to that of the offline algorithm.

The mean localization error at the end of the episodes for each method is
presented in Table [1} Unsurprisingly, the best trajectories minimizing the local-
ization uncertainty are generated by the offline algorithm, in all cases. We see
that our method using either of the observation representation yields very close
results to the offline algorithm. The performance of the two representations are
similar using bearing measurements, however the multi-modal representation re-
sults in better localization when using range measurements. One possible cause
for this is the spatial characteristics of the image in the case of range mea-
surements. In bearing measurements the centroid of the high-likelihood pixels
gives a reasonable prediction about the target position, which is not always the
case for range measurements. This phenomenon could also be the reason why
OFFLINE-FISHER outperforms our method ATL by a larger margin when us-
ing range measurements. However, in all experiments we see that our method
outperforms the greedy strategy.
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Fig. 5: Mean localization errors computed over 100 trials using bearing and range
measurements from m = 4,8 targets. Shaded area represents 1o.

Method m =2 m =4 m =38
Offline-Fisher 0.228 / 0.012 0.285 / 0.006 0.268 / 0.301
& Greedy-Local 2.599 / 0.404 2.444 / 0.190 2.406 / 0.284
ATL (Multi-modal) 0.481 / 0.092 0.457 / 0.272 0.557 / 0.223
ATL (Image) 0.479 / 0.255 0.305 / 0.041 0.618 / 0.256
Offline-Fisher 0.276 / 0.001 0.282 / 0.007 0.284 / 0.016
d Greedy-Local 1.357 / 0.264 1.430 / 0.137 1.388 / 0.381
ATL (Multi-modal) 0.461 / 0.070 0.524 / 0.104 0.468 / 0.186
ATL (Image) 0.990 / 0.257 0.646 / 0.299 0.954 / 0.336

Table 1: Mean and standard deviation of localization errors using bearing (¢)
and range (d) measurements from static targets in a 20 x 20 area

6.3 Localizing Dynamic Targets

We next analyze the localization performance when the targets are moving lo-
cally in a contained area. The target movement is modeled by a 2D Brownian
motion with a covariance of 0.1, similar to the setting in . Our current for-
mulation of the uncertainty histogram does not allow tracking targets perform-
ing large displacements. However, when the target motion is relatively small our
method gives reasonable performances compared to the baseline algorithms.
The results of this experiment are reported in Table [2l We see that the error
dynamics follow a similar trend to the case of stationary targets. Moreover, for
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all the methods the localization performance degrades as the targets start to
move.

Method m=2 m =4 m =8
Offline-Fisher 0.696 / 0.042 0.707 / 0.028 0.706 / 0.039
& Greedy-Local 3.177 / 0.396 2.851 / 0.305 2.810 / 0.257
ATL (Multi-modal) 0.981 / 0.661 0.992 / 0.728 0.899 / 0.444
ATL (Image) 0.901 / 0.215 0.699 / 0.140 1.031 / 0.368
Offline-Fisher 0.591 / 0.028 0.597 / 0.018 0.611 / 0.033
d Greedy-Local 1.985 / 0.106 2.003 / 0.149 2.159 / 0.338
ATL (Multi-modal) 0.947 / 0.034 0.874 / 0.134 0.845 / 0.180
ATL (Image) 1.312 / 0.328 0.978 / 0.279 1.390 / 0.195

Table 2: Localization errors using relative measurements from moving targets

6.4 Generalization Performance

The experiments reported so far evaluated the networks with the same number
of targets they have seen during training. In this section we investigate the
generalization performance of our method when there are more number of targets
than what the network was trained on.

Since the image representation is agnostic to the number of targets to be
localized, testing our networks on generalized number of targets is seamless. In
this set of experiments, we take our policy network trained with 2 targets and
evaluate it on m = 6 and 12 static targets. The results presented in Table
suggest that our method generalizes to localizing unseen number of targets,
owing to the image representation it uses for the observations.

Method m =06 m =12

Offline-Fisher 0.315 / 0.067 0.286 / 0.058
Greedy-Local 2.316 / 0.146 1.921 / 0.299
ATL (Image) 0.729 / 0.202 0.728 / 0.267

Table 3: Generalization performance: Evaluation on m = 6,12 targets using a
policy network trained to localize 2 targets with bearing measurements

7 Conclusion

In this paper we presented a method for localizing multiple targets using bearing
or range measurements. Leveraging recent advances in reinforcement learning
and convolutional networks, our method is able to generate trajectories for a
robot to localize targets when obtaining noisy relative observations. We show
that our method outperforms a standard greedy approach and performs similarly
compared to an offline algorithm which has access to the true position of the
targets, without knowing the true target locations.
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Future work includes tracking multiple targets that have adversarial move-

ments. Another interesting research direction is to study the target localization
problem in higher dimensions and cluttered environments such as animal track-
ing with an aerial vehicle in a forest.
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